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Table 9. Approximate enrichment ratios for nutrients and plutonium associated with sedimentatvarious locations in the
United States

Land use

and location

Approximate
enrichment ratios

Comments References

mean range

Cropland, USA* 4.5

3.6

2.5- 7.4

2.6- 6.0

Nitrogen
Phosphorus

75

75

Rangeland, USAa 2.6

7.1

1.1- 6.7

2.7 - 17

Nitrogen
Phosphorus

75

75

Cropland, USA° 1.6 1.1- 2.5 Fallout Plutonium 94

Pasture, USAb 2.3 0.8- 4.0 Fallout Plutonium 94

Mixed Cropland, USAC 2.5 1.2- 4.0 Fallout Plutonium,
Transport in Perennial River

95

Semiarid, USAd 5.5 1.4-13.3 Waste Effluent Plutonium,
Transport in Ephemeral Streams

93,96

a Smallagricultural watersheds (5.2-18 ha)at Chickasha, Oklahoma
b Smallagricultural watersheds (2.6- 2.9 hg) near Lebanon, Ohio
c Great Miami River (Drainagearea = 1401 km1) at Sidney, Ohio
d Los Alamos Watersheds (176-15,000 ha) near Los Alamos, New Mexico

By nature of the wide diversity of conditions under
which plutonium studies have been conducted in terres
trial ecosystems, we are in a position to evaluate the behav
ior of this element under a wide spectrum of study site and
plutonium source conditions. Climatic conditions ranging
from arid to humid and involving plutonium from weapons
fallout, industrial waste effluents and accidental spills have
been investigated [73].

Limited data for other actinides show concentration ratios

of 10"3 to 10"4 for curium and 10"l to 10"2 for nep
tunium.

The physiological availability of any one actinide can
be increased or decreased by at least an order of magnitude
by soil amendments and indigenous soil factors. For ex
ample, the addition of a chelating agent (DPTA)generally
increases availability of plutonium and americium to
plants, while liming treatment of the soil has been shown
to reduce plant availability of americium [97]. The im
portance of understanding the influence of soil amend
ments and indigenous soil factors on actinide availability
to plants results from the fact that wastes from nuclear
industries and fertilizers applied to agricultural lands often
contain chemicals (e.g. chelators) that can modify actinide
mobility [97].

Reduced plutonium that passes the root membrane
migrates to the shoots of plants in the xylem in associa
tion with organic ligands [72]. Differences in the gastro
intestinal absorption of plutoniumdeposited inleaves versus
stems, suggest that the chemical formof plutoniumin these
twoplant tissues differ[72]. Based on pot culturestudies,
available data on actinide distributions in various plant
parts suggest that concentration patterns are as follows:

roots > leaf-stem > seed-fruit

Concentrations ratios (plant/soil) of plutonium, americi
um, curium, and neptunium in seed-fruits generally average
from 1 to 2 orders of magnitude lower than the ratio for
stem-leaves [4, 98, 99]. Thus, in situations where root up
take predominates in actinide movement to agricultural
crops, food chain transport of the actinides to humans
through ingestion of fruits and seeds will be diminished.

Despite the host of chemical, biological and physical
factors which can modify the physiological availability of
actinides and subsequent transport within plant tissues
[72, 97, 103], field studies in contaminated sites suggest

Transport to vegetation

The two processes controlling actinide content of terres
trial plants are:

physiological availability to plant roots with subsequent
translocation to plant parts, and
the deposition of particles on foliage surfaces with or
without subsequent absorption into plant tissues.

The physiological availability of plutonium, americium
and to a lesser degree, curium, and neptunium have been
studied under a variety of controlled laboratory conditions
[97,98,99,100].

Based upon theoretical considerations the postulated
availability of the actinides to plants [6,101 ] is as follows:

Np(V) > U(VI) > Am(III) «* Cm(III) > Pu(IV) «
«* Th(IV) « Np(IV)

Pot culture studies tend to support that order of plant
availability of the actinides to plants [6,101 ] is as follows:
tion in plant over that in soil [97]. The concentration ratio
as applied to the actinides has been defined [102] as:

Activity/mass of receptor
Activity /mass of donor

In terrestrial systems the donor compartment is usually
considered to be soil. Concentration ratios range from 10"
to 10"8 for plutonium and 10"1 to 10"7 for americium.
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Table 10. Comparison ofplutonium concentration ratiosfor
field andglasshouse conditions [51]

Soil source Field Glasshouse

NTS* Area 11B 1.3 X 10"2 to 1.6 X 10"' 1.5 X10"4
NTS Area 11C 4.5 X 10"2 to 3.4 X 10"1 1.8 X10"4
NTS Area 13 7.8 X 10"2 to 4.4 X 10"' 1.1 X 10"4
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Studies on the uptake of plutonium by vegetable crops
grown in contaminated field sites show that as much as
50%of the plutonium in crop sampleswas surficialcon
tamination that could be removed by standard food pre
paration procedures [34]. Plutonium that cannot be re
moved from vegetable crop surfaces by washing does not
necessarily reflect plutonium incorporated into plant tis
sues. CATALDO and VAUGHN [103] haveshown that sub-
micron particles on foliage surfaces are extremely difficult
to remove by either simulated wind or rain.

Under large-scale agriculturalconditions, a major source
of actinides in crops may result from harvesting practices.
For example, most of the plutonium in graingrown in a
contaminated field site at Savannah River Laboratory was
attributed to cross-contamination with dust generated
duringmechanical threshing [24].

Transport to animals

The transport of actinides to animals isgoverned by the
sameprocesses that control the transport of these ele
ments to plants. That is, the actinides can be incorporated
into animal tissues and/or they can be deposited on tis
sues exposed directly to the environment (i.e.lung, pelt-
skin,and gastro-intestinal tract).

Based upon theoretical considerations and theassump
tion of similar conditions in thegut, actinide absorption
from the gut [67] should follow:

Np(V) > Cm(III) « Am(III) > Pu(IV)

Laboratory experiments on the physiological availability
of actinides to animals generally follow the pattern listed
above; plutoniumis leastavailable to animals, americium
and curium are intermediate in availability, and neptuni
umis most available [10]. However, manyfactors influ
ence gut availability of the actinides such that rankings of
availability are not rigid [67]. Forexample, Pu(IV), which
iscomplexed by microbial and/or plant tissues, maybe
more available for gut absorption than uncomplexed
plutonium [107,108] while P(VI) added to the gut con
taining food residues is reduced to P(IV) and thus becomes
less available forgutabsorption [109]. The current ICRP
[8] recommendation for gutabsorption ofplutonium by
man is lx 10"4.

The concentrations of plutonium in animals collected
from field sites indicates that gut availability of thisele
ment in the environment is low as shownby the lowcon
centrations in internalorgans and tissues. In addition,
highest concentrations of plutonium are invariably meas
ured in tissues exposed to contamination with soil parti
cles. Plutonium in the pelt, gastro-intestinal tract and to
a lower degree, lungs accounts for nearly all of the ani
mal's bodyburden [35, 50,110].
Various assessments of thecritical pathways ofplutoni
um movement into man suggest that inhalation is the
dominant pathway contributing to internal tissue dose
[26, 111]. While ingestion contributes as much as 10 times

a NTS (Nevada Test Site)

that contamination offoliage surfaces with particles con
taining actinides is thedominant transport mechanism in
the environment under many conditionsof climate for
varied sources. Comparative studies ofplant uptake of
plutonium under bothfield and laboratory conditions
generally yield the relationships shown in Table 10.Studies
focused specifically onroot uptake of plutonium from
soils yieldplant-soil concentration ratios which are at least
one order of magnitudelower than the ratios observed
under comparable conditions at field sites. Those differen
ces in concentration ratios implythat a mechanism exists
in theenvironment for delivering at least 10times more
plutonium to vegetation than transport across rootmem
branes. The higher ratios observed at field sites are general
ly attributed to the presence of surficial contamination on
field site vegetation. That conclusion is supported by the
obvious presence of soilon foliage surfaces and by the
ability to remove someof the plutonium contamination
from vegetation by washing [34,104].

Plutonium from a reprocessing plant atmospheric efflu
ent serves as the major source of contaminationon adja
cent vegetationat a site in the humid southeast U.S. [105].
However, in most terrestrial sitescontaminated with plu
tonium, direct fallout sources of plutonium are minimal
relative to terrestrial sources such as wind and water re-
suspended soil.

Studies in semi-arid regions of New Mexico demonstra
ted that rain-splash of soil particles with subsequent depo
sition on foliage surfacescan contribute essentially all of
the plutonium measured in field-site vegetation [47].
More importantly, those studies, which employed a
labeled-soil particle technique and the scanning electron
microscope,have shown that relationships that govern
translational movement of plutonium by erosion processes
in soilalsogovern transport of plutonium to foliage sur
faces. For example, impacting raindropscaused an enrich
ment of small soilparticles (< 105/im) on foliage sur
faces. In general, only the highly transportable silt-clay
particles(< 53 /urn diameter), which generally contain
higher concentrations of plutonium [106], are retainedby
plantsurfaces. Calculations based on the mass and plutoni
um content of soil measured on plants demonstrated that
the rainsplash mechanism could easilyaccount for the plu
tonium concentration ratios of 5x 10"2 that were ob
servedat this field site [34].

The absorption ofplutonium through leafsurfaces has
beendemonstrated[103]but isconsidered to be a low order
process in contaminated field sites particularly with annual
or deciduous vegetation species.



98

more plutonium to manthan inhalation, the low gut ab
sorption (based on ICRP [8]) reduces the significance of
the ingestion pathwayin contributing to internaldose.
However, the recommended gut absorption factor of
1x 10"4 [8] is based on laboratory studies with rats that
were fed plutonium. In lightof recentconcerns [112],
a closer examinationof gut absorptionvalues for plutoni
um and other actinides, under environmental conditions
is needed.

Thehighmobilityof large herbivores coupled with
natural elimination processes provides a mechanism for
actinide transport across the landscape. Studies in nuclear
fallout areas at Nevada Test Site [113] and in a nuclear
spill area at Rocky Flats, Colorado [104] show that large
herbivores (deer and cattle) ingest substantial quantities
of plutonium-contaminated soil (i.e. several hundred grams
per day for range cattle). Although the amount of plutoni
um transported across the landscape by this mechanism
is considered to be small in areas where the extent of

contamination is large (i.e. fallout areas) relative to the
home range of the animal, there are circumstances where
this transport mechanism becomes important. For exam
ple, in a nuclear waste burial site at Hanford Washington,
jack rabbits (Lepuscalifornicus) which gained access to
buried waste, ingested radioactive salts and subsequently
excreted the salts on the surface of the site and surround

ing area [114].
Studies on pocket gophers {Thomomys bottae) in

habiting a low-level waste site at Los Alamos, New Mexico
[115], show that the burrowing activities of this animal
can greatly perturb cover profiles placed over low-level
radioactive waste disposal trenches. Over a one year peri
od, gophers excavated about 11 metric tons of soil per
hectare from within the trench cover and created about

3000 m of tunnel system in the cover profile. Animal
burrowing activities can alter actinide distributions within
the soil profile, as has been shown for pocket gophers in
contaminated sites at Rocky Flats, Colorado [116] and
for other small mammals at the Radioactive Waste Manage
ment Complex at Idaho National Engineering Laboratory
[117].

Burrowingactivities by animals can have a significant
effect on the structure and output of dose assessment
models for the actinides. For example, at low-levelwaste
sites, that use shallow-land burial methods, radionuclides
brought to the surface along with soil casts become sub
ject to physical transport processes as well as to physio
logical processes associated with root uptake. As discussed
previously, physical processes transfer at least 10 times
more plutonium to vegetation than do physiological
processes.

Studies with honeybees at Los Alamos [118] demon
strated that small amounts of plutonium present in treated
liquid wastes used by bees appear in honey. Considering
that most of the plutonium in the effluent is associated
with particles ( < 30% is associated with the fraction
< 0.05 fxm [119]), honeybees may be capable of trans
porting actinides that are both in solution and in associa
tion with particles in a liquid source to the honey.
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Based upon the analysis of available concentration
ratios for the actinides, both chemical and physical proces
ses contribute to the contamination of biological compo
nents of ecosystems. Physical processes that cause soil to
be transported to plants and animals dominate in the
transport of plutonium and perhaps to a lesser degree,
americium through food webs. Although the plutonium
and americium passing through an animal may be largely
associated with particles, the relative importance of this
source of actinide compared to that incorporated into
food-stuffs in contributing to internal tissue burdens is
unknown. However, it is a fact, in the case of plutonium,
that physical processes can deliver at least 10 times more
plutonium to plants than root uptake. That fact would
suggest the need to determine the relative importance of
plutonium deposited on plants versus that incorporated
into plants as a source of contamination to plant consum
ers.

The general lack of data on curium, neptunium, urani
um and thorium in terrestrial ecosystem components
precludes any conclusions on food web transport. All
available data from laboratory studies indicate that those
elements are more mobile than plutonium.

Recent field studies at Oak Ridge [120,121] show
that the availability of actinides to plants and animals in
two terrestrial study sites was:

U > Cm > Am > Th « Pu

Uranium was about 10 times more available to plants and
animals than plutonium and thorium. Further field studies
are needed to place bounds on the degree of transport of
those elements to biota.

Aquatic

Distribution and transport

Assessing the transport of actinides to aquatic biota by
the conventional concentration ratio, as defined previous
ly [102], presents a dilemma in that it is not always clear
which aquatic component serves as the donor of the acti
nides to receptor components. Concentration ratios for
aquatic systems are usually based on water as the donor
compartment. Thus, CR's reported for plutonium sug
gest that aquatic organisms highly concentrate this ele
ment.

As an example of the problem, a comparison of con
centration ratios based on water versus those based on

sediment as the donor compartment is given in Table 2
for several biotic components of Lake Michigan [122].

Regardless of how the ratio is calculated, it is clear that
plutonium is attenuated as it passes through successively
higher trophic levels. Based upon observations in both
freshwater and marine environments, it appears that con
centration ratios decrease about one order of magnitude
at each succeeding trophic level. There is strong evidence



The Behavior of Actinides in the Environments

Table 11. Comparison ofplutonium concentration ratios for
biological components ofLake Michiganusingwater versus

sediment as the donor compartments (Adapted from ref. [122]

Compartment
Donor

Water*
compartment

Sediment

Mixed plankton
Benthic invertebrates

Zooplankton
Benthic fish

Planktivorous fish
Piscivorous fish
Water

Sediment

6300

1300

250

250

60

0.5
1

130000

5X10"2

1X10"2

2X10"3
2X10"3
5X10"4

3X10"6

8X lO"6
1

a concentration ratio
pCi Pu/g receptor

pCi Pu/g donor
based on wet weights.

that physical processes (i.e. surface attachment and/or
ingestion of suspended particles and/or sediments) play
an important role in contaminating aquatic biota with
plutonium [112]. Organisms living in close association
with bottom sediments generally have thehighest plutoni
um concentration ratios (Table 11).

The small amount of data on americium inaquatic
biota do notprovide a sufficient basis for comparison
with corresponding plutonium data. Some studies suggest
that americium ismore available than plutonium in the
aquatic environs [123,124] while other studies show no
suchpatterns [125,126]. Field data on the other actinides
appear to be completely lacking.

Summary and conclusions

The chemical characteristics of the actinide elements
cause them to besorbed to soils andsediments to a large
extent. The stabilityof the sorption largely controlshow
mobile these elements will be in food chain processes
such asroot uptakein plants, gill transfer in fish, or
ingestion via food or water.
Although plutonium and americium are tightly bound
to soils andsediments in the environment, a very small
fraction of these elements issoluble and enters biological
tissues. The limited time-span (< 40 years) overwhich we
haveobservedactinide behavior in the environment serious
ly limits our ability to forecast their behavior over the
centuries and millenia duringwhichmany of these ele
ments will be present in theenvironment. However, pre
liminary observations onnaturally occurring analog ele
ments indicate that actinide solubility will likely not
change appreciably with time.

Present data demonstrate that soils and sediments serve
as the major repository of plutonium in freshwaterand
terrestrial ecosystems and that processes which redis
tribute soils and sediment can also cause major changes
in the environmental distribution of this element. Al
though data-bases for the other actinides are small, physi
cal processes will also provide a potentially important
transport mechanism for these elements.
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It is clear that there is a need to determine the relative
importance of actinides associated with soil and sediment
as a source of contamination to biota. Available data on
actinides in terrestrialand fresh water ecosystems point
to the potential importance of soil and sediment move
ment through food webs.

Because physical transportprocesses operateat the soil-
airor sediment-water interface, changes in the distribu
tion of plutonium within the soil-sediment profile will
alter the importance of this transportpathway. Present
distributions of plutonium in soil profiles from sites con
taminated up to 35 years ago [35, 50] indicate that with
time plutonium is depleted from the soil surface either
from losses with eroding soil or from transport intothe
soil profile. Whether those changes in plutonium distribu
tion will change the relative importance of, what at pres
ent, are low order chemical processesis unknown. In
many aquatic systems,plutonium migration into the
sediments through sedimentation and /or chemical proces
ses may isolate the plutonium from the biosphere. In ter
restrial systems, losses of plutonium into the soil profile
may create conditions more favorable for root uptake.

Any phenomena which retain actinides in contact with
the biosphere for extended times such as has been observed
in arctic ecosystems will increase risks due to exposure to
these elements. The interception properties of vegetation
cover, action by organisms living in the soil, and processes
which resuspend sediments in aquatic ecosystems allcon
tribute to maintaining actinides within thebiosphere.

With few exceptions, all present sources of actinides
in terrestrial and aquatic ecosystems have resulted in very
low transfer of these elements into food webs regardless
of the transport process. Doses to humans resulting from
ingestion of food-stuffs contaminated with the actinides
have been uniformly low - much below doses incurred
by humans from natural sources.
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